High-Voltage, High-Power Silicon N-P-N Power Transistor **RCA423** For Switching and Linear Applications in Military, Industrial and Commercial Equipment #### Features: - Maximum safe-area-of-operation curves - Low saturation voltage: $V_{CE}^{(sat)} = 0.8V \text{ max}$ - High voltage rating: V_{CEO}(sus) = 325V - High dissipation rating: P_T = 125W - Steel Hermetic TO-204MA Package ### Applications: - **■** Inverter - **■** Deflection Circuits - Switching Regulators - High-Voltage Bridge Amplifiers - **■** Ignition circuits The RCA423 is an epitaxial silicon n-p-n transistor utilizing a multiple-emitter-site structure. The transistor features high breakdown-voltage values make them especially suitable for use in inverters, deflection circuits, switching regulators, high-voltage bridge amplifiers, ignition circuits and other high voltage switching applications. The RCA423 is supplied in the steel JEDEC TO-204MA hermetic package. # **Terminal Designations** **JEDEC TO-204MA** ### MAXIMUM RATINGS, Absolute-Maximum Values: | V _{CBO} | 400 | V | | |--|-------------|------|--| | V _{CEO} (sus) | 325 | V | | | V _{EBO} | 5 | V | | | I _c | 7 | А | | | I _{cm} | 10 | А | | | I _B | 2 | А | | | P _T T _C ≤ 25°C | 125 | W | | | P _T T _C > 25°C Derate linearly | 0.714 | W/°C | | | $T_{stg}T_{J}$ | -65 to +200 | °C | | | T _L At distance ≥ 1/32 in. (0.8mm) from seating plane for 10s max. | 230 | °C | | www.web-bcs.com Source: RCA SSD-220C (1981) ## **Electrical Characteristics,** at Case Temperature $(T_C) = 25^{\circ}C$ Unless Otherwise Specified | Characteristic
Symbol | Test Conditions | | | | | | | | |---|-----------------|-----------------|----------------|--------------------------|------------------|------|------|-------| | | Voltage (V) | | DC Current (A) | | Limits | | | Units | | | V _{CE} | V _{BE} | I _c | I _B | Min. | Тур. | Max. | | | I _{CEO} | 300 | | | | - | - | 0.25 | mA | | I _{CEV} | 400 | -1.5 | | | ı | - | 0.25 | | | I _{CEV}
(TC=125°C) | 400 | -1.5 | | | - | - | 0.5 | | | I _{EBO} | | -5 | | | - | - | 5 | | | h _{FE} | 5 | | 1 a | | 30 | - | 90 | | | | 5 | | 2.5ª | | 10 | - | - | | | V _{CEO} ^{(sus)b} (Fig. 3) | | | 0.1 | | 325 ^b | - | - | V | | V _{BE} (sat) | | | 1 ^a | 0.1 | - | 0.9 | 1.5 | | | V _{CE} ^(sat) | | | 1 ^a | 0.1 | ı | 0.2 | 0.8 | | | I _{S/b} c Pulse duration (non-repetitive) = 1s | 150 | | | | 0.1 | - | - | A | | f _T | 10 | | 0.2 | | - | 4 | - | MHz | | t _r | | | 1 | 0.1
(IB1) | - | 0.35 | - | | | t _s | | | 1 | 0.1 (IB1)
-0.5 (-IB2) | - | 1.4 | - | μs | | t _f | | | 1 | 0.1 (IB1)
-0.5 (-IB2) | - | 0.15 | - | | | $R_{\scriptscriptstyle{ ext{ heta}JC}}$ | 10 | | 5 | | | | 1.4 | °C/W | Pulsed: pulse duration ≤ 350µs, duty factor = 2% **b CAUTION**: The sustaining voltage V_{CEO}(sus) *MUST NOT* be measured on a curve tracer and measured by means of the test circuit shown in Fig.3 c I_{S/b} is defined as the current at which second breakdown occurs at a specified collector voltage with the emitter-base junction forward-biased for transistor operation in the active region d $I_{B1} = -I_{B2} = \text{value shown}$ Fig. 3 Circuit used to measure sustaining voltage, $\rm V_{\rm CEO}^{(sus)}$ $^{\star}~\text{I}_{\text{B1}}$ and I_{B2} measured with tektronix current probe P6019 or equivalent Circuit used to measure switching time (t_r,t_s,t_f) - continous collector current - peak collector current I_{CM} - collector-cutoff current with specified resistance between base and emitter I_{CER} - collector-cutoff current with specified circuit between base and emitter I_{CEX} - continous base current - emitter-cutoff current, collector open I_{EBO} - forward-bias, second break-down collector current $I_{S/b}$ - collector-to-base voltage, emitter open V_{CBO} $V_{\text{CEO}}^{\text{CBO}}$ - collector-to-emitter voltage, base open $V_{\text{CEO}}^{\text{(sus)}}$ - collector-to-emitter sustaining voltage, base open $V_{\text{CER}}^{(\text{sus})}$ - collector-to-emitter sustaining voltage with specified resistance between base and emitter - emitter-to-base voltage, collector open V_{EBO} - base-to-emitter voltage V_{BE}_{Sat} - collector-to-emitter saturation voltage - common-base output capacitance C_{OB} COBO - open circuit common-base output capacitance fΤ - gain-bandwidth product (unity-gain frequency for devices in which gain roll-off has a -1 slope) - dc forward-current transfer ratio h_{FE} - magnitude of common-emitter, small-signal, short-circuit, forward-current transfer ratio |h_{fe}| R_{BE} - external base-to-emitter resistance $R_{\theta JC}$ P_{T} - thermal resistance, junction-to-case - transistor dissipation at specified temperature t_f t_r t_s T_C - fall time - rise time - storage time - case temperature - storage temperature - operating (junction) temperature - lead temperature during soldering - conduction angle Source: RCA SSD-220C (1981) www.web-bcs.com